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Abstract 

Although CP violation was discovered more than thirty years 
ago, its origin is still unknown. In these lectures, we describe the CP- 
violating effects which have been seen in K decays, and explain how 
CP violation can be caused by the Standard Model weak interaction. 
The hypothesis that this interaction is indeed the origin of CP viola- 
tion will be incisively tested by future experiments on B and K decays. 
We explain what quantities these experiments will try to determine, 
and how they will be able to determine them in a theoretically clean 
way. To clarify the physics of the K system, we give a phase-conven- 
tion-free description of CP violation in this system. We conclude by 
briefly exploring whether electric dipole moments actually violate CP 
even if CPT invariance is not assumed. 
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Preamble 

Being lovers of symmetry, we are tempted to expect that the behavior of a 
iysical system will not change at all if we replace every particle in it by its anti- 
xticle. However, in some processes nature violates this expected matter-anti- 
.atter symmetry, Particularly interesting is the violation of invariance under 
P, the combined action of charge conjugation C and parity P. Before we turn to 
P, let us first briefly consider the simplest operation which replaces a particle by 
3 antiparticle, namely C. 

The effect of C on a particle A p,h) of momentum p and helicity h is given by 

c I i-t&h)) = qc I f(m) , (1.1) 

here 7 is the antiparticle off, and r\c is a phase factor. Note that C does not alter 
particle’s momentum or helicity. 

It has long been known that some processes are not invariant under C. 
Consider, for example, the decay x + pv. Invariance under C would require that 
he muons produced in x+ + p+ + v and rr + p- + 7 have identical helicity. But it 
- found that actually they have opposite helicity: the u+ in x+ decay is always left- J 
landed, while the CL- in x- decay is always right-handed. Thus, x + pv is not 
nvariant under C. 

A somewhat more subtle operation which replaces a particle by its antipar- 
icle is CP. The effect of CP on ff 3,X) is given by 

CP I f@,h)) = r\fJp I %3,-W 2 (1.2) 

Sere, the momentum and helicity reversals are due to the action of P, and ~\cp is a 
phase factor. 

From Eq. (1.21, the CP-mirror image of the decay ti + I$+.~ + v, where the 
subscript LH reminds us that the p+ has left-handed helicity, is the decay X- + 
piH + v, in which the p- has right-handed helicity. These two decays are the ones 
actually observed, and they have equal rates. Thus, x+ pv, while not invariant 
under C, is invariant under CP. 

One might wonder whether perhaps all processes, even those which are not 
invariant under C, are nevertheless invariant under CP. The decays of the neu- 
tral K mesons have taught us that this is not the case. Let us turn, then, to the 
phenomenology of the neutral kaon system. 
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2. CP Violation in the Neutral K Svstem 

Let us consider neutral kaons at rest. We choose our phase conventions in 
this Section so that 

CPjKo) = +I@) . 

Simple field theory then implies that 

(2.1) 

CPI@) = +IKo> . (2.2) 

In Section 5, we shall free ourselves of this phase convention, and adopt a conven- 
tion-free formalism. 

WbileKoandph ave opposite strangeness, the weak interactions do not 
conserve strangeness, and so they mix Ko and @. The time evolution of a neutral 
kaon is then described by a two-component Schrodinger equation of the form 

(2.3) 

Here, a(t) is the amplitude for us to have a Ko at time t, and z(t) is the amplitude 
for us to have a m. The quantity M is a 2x2 matrix, 

known as the neutral K mass matrix, which seI7res as the effective Hamiltonian 
for a neutral kaon at rest. Since a kaon disappears with time through its decay, M 

iant. It is readily shown that 

is non-Hermitean. 

We shall assume that the world is CPT invar 
this invariance implies that 

M11= (KqMlKq = @ IMlm) = !a4& . (2.5) 

Writing !A411 9 M - X/2, and N22 = z - ?/2, we see that the real part of Eq. (2.51, M 
= M, is an example of the well-known CPT requirement that a particle and its anti- 
particle have the same mass. The imaginary part, r = ?, is an example of the re- 
quirement that they have the same total width or, equivalently, the same lifetime. 
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Assume for the moment that CP invariance holds. Then our effective 
kmiltonian obeys (CPjtH(C!P) = N and we have 

9412 I (Ko 1 MI@) = {KoI (CP,;M(CP) I@) 

= KCPX” 1 MkCP@) = @ 1 MjKo) G M21 . 

bus, from Eqs. (2.5) and (2.61, Mhas the form 

. 

(2.6) 

(2.7) 

M-the mass eigenstates of the neutral K system-are then 
. That is, they are the CP eigenstates 

IKl) = $[IK”) +Fl 
md 

1%) = $[IK”) -p)] * 
Yote that 1 K1) and 1 Kz) have opposite CP parity 

CP 1 Q(2)) = $11 Q(2)) . 

(2.8) 

(2.9) 

(2.10) 

Now, experimentally, the two mass eigenstates of the neutral K system are 
the K-short K8, with a short lifetime 78 = (0.8926 + 0.0012) x lo-10 set, and the K- 
long KL, with a much longer lifetime r~ = (5.17 + 0.04) x 104 sec. Essentially all KS 
decays are to ~+lr or z%o. It is easy to show that both of these fkal states have CP 
= +l. Thus, if CP invariance and the associated CP conservation law hold, K8 
must be Kl. Then KL must be K2. But then, since K2 has CP = -1, the decays KL -+ 
tilr and KL + &co are forbidden. Nevertheless, these decays do occur.l Thus, CP 
is violated in neutral K decays. 

To be sure, the observed violation is small. The amplitudes for the CP-violat- 
ing decay KL + ~+lr and the CP-conserving one KS + X+T are in the ratio2 

=(2.285f0.019)x10-3 . (2.11) 
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Similarly,2 

I( ~“~olr/KL)I 
I( ~"~olWS)~ 

=(2.275~o.019)x10-3 . (2.12) 

Nevertheless, this violation of CP is nonvanishing. Like C, CP is a symmetry 
which is not always respected. 

In addition to KL + XX, other CP-violating effects have been seen in the 
neutral kaon system. One of these is found in the semileptonic decays KL + lcev, 
where e is an e or a CL. When CP invariance holds, the KL is a CP eigenstate. Then 
the CP-mirror image of the decay KL + x-.!+v is KL -+ x+!-t;. To be sure, CP 
reverses the momenta and helicities of all the outgoing particles, but that is irrel- 
evant when we integrate over these variables to get the full rate for decay into the 
particles under consideration. Thus, when CP invariance holds, we require that 
IYKL -+ ~r!-cV ) = ~(KL + +4-V). However, it is found experimentally that2 

r(KL + z-e+v ) ( - r 
6 I, 

KL + A-7 
P 1 

+ 1, 

= 3.27 AZ 0.12 x l@ . (2.13) 

Further observed CP-violating effects wi.lI be discussed in Section 5. 

3. The Oriclin of CP Violation in the Standard Model 

All CP-violating effects observed to date have been seen in the decays of neu- 
tral kaons. These decays are known to be due to the weak interaction. Therefore, it 
is natural to speculate that CP violation may well be an effect of the weak inter- 
action. This is the possibility that we shall emphasize here. 

The weak interaction is .very successfully described by the so-called 
Standard Model (SM). In the SM, the weak interaction is carried by the charged 
weak boson W, and the neutral weak boson Z. These bosons couple to the leptons 
and to the three generations, or families, of quarks: 

Generation: 

Charge = 2/3 
Charge = -1./3 

Mass 
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s indicated, the quarks in the third generation are the heaviest ones, those in the 
:cond generation are lighter, and those in the first generation are lighter still In 
typical Feynman diagram for a hadronic weak decay, a relatively heavy quark 
zcays to lighter ones via W exchange. This is illustrated in Fig. 1, in which a KS 
3caysviaits JKo)( =Isd)) component into x+r. The diagram of Fig. 1 entails the 
r-mediated quark decay s --) uiid. 

a- 
Figure 1. One of the diagrams for KS + &x-. 

According to the SM, the coupling of the W boson to the quarks is given by 
;he Hamiltonian 

(2.14) 

i=d,s,b i 

l-Y5 
Here, g is a real overall coupling strength, W is the W boson field, aL = 7 is 
she left-handed projection of the quark field a and similarly for iL, and the numer- 
lcal coefficients V,i are the elements of the Cabibbo-Kobayashi-Maskawa (CKM) 
quark mixing matrix 

(2.15) 

Note from Eq. (2.14) that any of the three negatively-charged quarks i can turn into 
any of the three positively-charged ones 01 by emitting a W-, the amplitude for its 
doing so being proportional to V,i. Thus, the off-diagonal elements of V describe 
transitions in which a quark in one family turns into a quark in another family. 
Hence, these elements mix the families, earning for V the name “quark mixing 
matrix”. 
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The SM coupling of the Z boson to the quarks is described by the 
Hamiltonian 

Hz= ,,,“,, z’ c {[13(4~)-Q(4)5in~ ~]LTr~~4r-Q(9)si"2~rSRlj14~} . (2.16) 
q=u,c,t, 

ds,b 

Here, 0~ is the Weinberg angle, Is(qL) is the we wzf;Fin of the left-handed 
quark qL, Q(q) is the electric charge of q, and QR = Tq is the right-handed 
projection of the quark field q. 

Under CP, the term ~W~V~ZZLr,iL in the W-quark interaction 9+v trans- 
forms as 42 

wx g WpV&LypiL(CP)-l = [o’(w)ri(a)s’(i)]~WitV~~L~~~~ . (2.17) 

Here, q(w), etc. are phases, and we may choose [n*(W)r\(a)rl*(i)l = 1. Then 

g P %f = ZW Iii Vti& y& + 
$ 

2 W+ zi V’aiTL ypaL 
I . 

’ 
CP 3 a,i 

) g Wcl+ C V&ypaL+x 
(2.18) 

Wp C V’t&ypiL 
a,i 

We see that ti is CP-invariant if, and only if, V is real, or can be made real by 
changing the phase conventions for the quark fields. 

The analogue of Eq. (2.17) for the terms in the Z-quark interaction X2 states 
that each of these terms transforms back into itself under CP. Thus, !j& is neces- 
sarily CP-invariant. 

We conclude that in the SM weak interaction, CP violation can arise only if 
some of the numbers Ve are complex. How their complexity can produce physi- 
cal CP-violating effects will be explained shortly. 

3.1. The CKM Matrix 

The SM requires that the CKM quark mixing matrix be unitary. Apart from 
this unitarity, the matrix is not predicted, so its elements must be determined 
experimentally. 



HOW many independent parameters are needed to determine fully the CKM 
natrix V? In answering this question, we must bear in mind that some of the 
somplex phases which V may contain are not physically mean.ingfiL To see this, 
note from Eq. (2.14) that, apart from irrelevant factors, Vh is just the amplitude 
:a 1 L%v 1 i) for the quark transition i + a through W emission. Thus, if the arbi- 
:rary relative phase of the i and a quarks is changed, the phase of Vh will change 
correspondingly. Redefining the down-type quark i by 1 i) + eio 1 i) multiplies the i 
column of V by Go. Similarly, phase redefining the up-type quark a multiplies the 
x row of V by a phase factor. Hence, without changing the physics, we may mul- 
iiply any column or row of V by a phase factor, or carry out any number of such 
operations. We may use these operations to remove from V five phases corre- 
sponding to the five relative phases of the six quarks, leaving five of the elements 
of V real. We may do this, for example, by multiplying each of the columns 0fVby 
a phase factor chosen to make its bottom element real, and then multiplying each 
of the top two rows by a phase factor chosen to make its rightmost element real. 

Mindful of this freedom to remove at least some phases from V, let us now 
suppose that there are, not just three doublet quark families, but N of them, so 
that V becomes an NxN matrix. How many parameters are necessary to deter- 
mine it completely? Before constraints are imposed, 2N2 real numbers are 
required to fully specify the @ complex elements of V. But the unitarity of V 
demands that the sum of the absolute squares of the elements in any of its 
columns be unity-a demand that imposes N constraints. Furthermore, unitarity 
demands that any two of the columns of V be orthogonal. Now, there are NW-l)/2 
pairs of columns, and the equation expressing the orthogonality of any pair has 
both a real and an imaginary part. Thus, orthogonality of columns imposes N(N- 
1) constraints. Hence, the most general NxN unitary matrix depends on 2N2 - N 
- N(N-1) = * real parameters. Now, in the N quark families there are 2N 
quarks, with 2N-1 relative phases. Thus, 2N-1 phases in V are not physically 
meaningful, and may be removed by phase redefinitions of the quarks or, equiva- 
lently, by multiplying columns and rows of V by phase factors. Hence, the number 
of physically meaningful independent real parameters inVis I@-(ZN-1) = (N-l12. 

One possible choice for these parameters is mixing angles (parameters 
which would be present even if V were real) and phases. To calculate the number 
of mixing angles on which V depends, imagine that it is real. It is then an ortho- 
gonal (i.e., a rotation) matrix. It contains N2 real elements, subject to N con- 
straints expressing the requirement that each of its columns be a vector of unit 
length, and N(N-1)/2 constraints expressing the requirement that any pair of its 
columns be orthogonal. Thus, V depends on N2 - N - N(N-1)/2 = N(N-lY2 mix- 
ing angles. 



In summary, the complex NxN quark mixing matrix depends on (N-112 
parameters. If we take these to be mixing angles and phases, NW-l)/2 of them 
are mixing angles, so that (N-112 - N(N-1)/2 = (N-l)(N-2112 of them are phases. 
Note from this result that there are no physically signiiicant phases in the mixing 
matrix unless N 2 3.3 Had there been fewer than three quark families, it would 
have been impossible for the weak interaction, as described in the SM, to violate 
CP. 

(It is instructive and easy to explicitly construct the most general unitary 
quark mixing matrix for the case N = 2, and show that all phases can be removed 
from this matrix by multiplying its rows and columns by phase factors. Since this 
leaves the matrix real, it cannot violate CP.) 

Although there are in reality (at least) three quark families, the fact that 
the quark mixing matrix cannot violate CP in a world with only two families has 
an important consequence. Namely, it implies that CP violation in K decays will 
be small, as observed, even if the complex phases in the true 3x3 mixing matrix 
are large. Furthermore, it tells us where we must look if we wish to see large CP- 
violating effects.4 To see why it implies that CP violation in K decays will be small, 
note that, as illustrated in Fig. 1, the dominant diagrams for K decays involve only 
quarks from the first two families. The quarks t and b are not involved. Thus, in 
first approrn’mation, K decays “do not know” that there are not just two, but three 
quark generations. In this approximation, K decay processes do not contain 
enough physics to violate CP. Now, when one goes beyond the first approtiation, 
one finds that K decays do involve the quarks of the third generation in several 
ways, so that these reactions can (and do!) violate CP. However, because one must 
go beyond the leading approximation before the third generation quarks come into 
the picture, CP violation in K decays is small. 

From this discussion, it is clear that if we wish to see large CP-violating 
effects coming from the CKM matrix, we must look for them in processes which 
involve, even in leading approximation, quarks from all three generations. To this 
end, new facilities are being built and new experiments are being developed 
which will study CP violation in the decays of the B or beauty mesons. The B 
mesons and their quark content are 

B+ =[6u] B- = fi7i] 

Bd = C6dl & = fid] 

BS = &I Ei=lm 
Bc = [EC] g=cbq. 



1 a typical B decay, the heavy b or 5 quark in the B-a quark of the third genera- 
on-decays down to lighter quarks in the first and/or second generations. Often, 
1 three generations are involved. Thus, CP violation can be large. 

As we shall see shortly, the CP-violating effects in B decays can also yield 
km information on the phases in the CKM matrix. Thus, the study of these 
Lfects will be a very good test of whether these phases are indeed the origin of CP 
iolation. 

J CP Vlgj.a.Uon in the B Svstem 

The effects to be sought in the B system are CP-violating inequalities 
etween the rates for CP-mirror-image decays. When CP invariance holds, the 
mplitude (f 1 T 1 i) for the decay of any initial state i into any final one f obeys 

(f 1 T 1 i) = (CP[fl 1 T 1 CPM) . (4.1) 

Thus, for example, any inequality between the rates for the CP-mirror-image 
decays B+ + f and B- + z where 73 CP[fJ is the CP-mirror image of the final 
state f, is a violation of CP invariance. It is violations of this general sort, which 
are B-system analogues of the K-system asymmetry 6 of Eq. (2.13), which will be 
sought. 

As we noted earlier, CPT invariance, which we assume to hold exactly, 
requires that any unstable particle and its a&par-Me have the same total width. 
Thus, if there is some final state f for which, in violation of CP, T[B+ + Q > T[B- 
+ fl, then there must be some other final state (or states) f* for which T[B+ + fl< 
rtB- + m. Otherwise, the CPT constraint that rt,.,,a @+I = rt,bl[B-] could not be 
satisfied. 

The complex phases in the CKh4 matrix, like complex phases anywhere in 
quantum mechanics, lead to physical consequences only through interferences 
between amplitudes. In particular, it is through interferences that the CIShI 
phases produce CP violation. How they do this is nicely illustrated by the compari- 
son between the CP-mirror-image processes B+ + f and B- + t Suppose that the 
weak decay B+ + f receives contributions from two Feynman diagrams. Each of 
these diagrams is proportional, like the diagram of Fig. 1, to some product of 
CKM elements. Thus, the amplitude a for the fist diagram has the form 

12 = j@Li ps , (4.2) 
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where M is the magnitude of a, 6 CfKM is the phase of the product of CKM elements 
to which the diagram is proportional, and as is a phase arising from strong in- 
teraction effects such as final-state rescattering. Similarly, the amplitude a’ for 
the second diagram has the form 

a’ = 
‘J’/ , 

M’e’ CKMeLaS , (4.3) 

where l&l’ q /a/l, &lf cIcM is the phase of the product of CKM elements to which the 
second diagram is proportional, and ai is the strong-interaction phase of this 
diagram. The rate for B+ + f is then 

r[ B+ ~ f] = IMe’& @S + M’&&i eiai / 
, 

=M* +M'* +2MM'cos(p)+'ps) 
(4.4) 

where cp = S,f,, - St& is the relative CKM phase of the two amplitudes, and (ps = 
as - a& is their relative strong-interaction phase. 

Now, the diagrams for the CP-mirror-image decay B- + Fare, of course, 
the same as those for B+ + f, except that every quark (antiquark) is replaced by its 
antiquark (quark). From %, Eq. (2.141, we see that, owing to this replacement, 
every CKM element appearing in a diagram for B+ + f is replaced by its complex 
conjugate in the corresponding diagram for B- + z However, apart from CKhI 
phases, the SM weak interaction of Eqs. (2.14) and (2.16) is completely CP invari- 
ant, as is the SM strong interaction. Thus, apart from the reversal of its CKM 
phase, the amplitude of a diagram does not change at all when we go from B+ + f 
to B- + c Hence, the rate for B- + Tis 

dB- + f] = IMe--#&Jas + MRe-i6&&aS ( 
(4.5) 

=M* +M'2+2MM'cos(-cp+q~) 

Comparing Eqs. (4.4) and (4.51, we see that when CKM phases are present, 
the two interfering amplitudes can have a different relative phase in B- -+ Tthan 
they do in B+ + f. As a result, T[B- + fi and F[B+ + fl can di.fYer, in violation of 
CP. 

To test the SM of CP violation, one would like not only to observe a CP-violat- 
ing inequality between T[B+ + fl and T[B- + fl, but also to determine the CIW 
phase cp. Of course, IIB+ + fl and T[B- + fi are only two measurable quantities, 
and as we see from Eqs. (4.4) and (4.51, they depend on four parameters: M, M’, cp, 
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md cps. Thus, by themselves, they cannot determine cp. Consequently, in general, 
3 clean test of the SM of CP violation is not possible in decays of charged B mesons. 
To be sure, in the exceptional cases where M and M’ can be determined indepen- 
lently of F[B+ + fl and F[B- + a, the measurement of these two decay rates de- 
sermines sinzcp, up to a two-fold ambiguity, and so does provide a test of the SM.51 

1.1. Decays of Neutral B Mesons 

In decays of neutral B mesons, a clean test of the SM of CP violation is 
possible. To see why, let us discuss the Bd - Bd system; the B, -z system behaves 
similarly. 

The key feature of the Bd - rd system is the fact that the Bd and Kd mix. In 
:he SM, they do so largely as a result of the box diagram in Fig. 2. The phase of the 
mixing amplitude A(Bd + &) is then 

+qb Y By)] = arg[(v&J] =-26&M . (4.6) 

We shall refer to 6 m cm (where m stands for mixing) as the Bd - & mixing phase. 

Bd > 

Figure 2. The SM box diagram for Bd - & mixing. 

Time evolution in the Bd - & system is described by a two-component 
Schrodinger equation, just like the one for neutral kaons, Eq. (2.3). The Bd - gd 
S&r&linger equation involves a mass matrix, 

(4.7) 

which is the Bd - & counterpart to the K mass matrix of Eq. (2.4). In the Bd - Kd 
mass matrix, the diagonal elements X are equal because of CPT, and the off-diag- 
onal element 9621 comes from the box diagram of Fig. 2. The remaining off-diago- 



nai element, N12, comes from a similar box diagram in which every quark 
( antiquark) has been replaced by its antiquark (quark). As in the case of charged B 
decays, this means that every CKM element has been replaced by its complex con- 
jugate, but there have been no other changes. Since the box diagram of Fig. 2 has 
no strong phase (owing to the fact that the B meson is far below rt threshold), we 
see that 

M-n = MfpJ7 +v*) = &I ’ (4.8) 

Let us cab the mass eigenstates of the Bd - & system ~~~~~~ (BH) and 
BLight (BL). From Eq. 4.7, the complex masses of these mass eigenstates-the 
eigenvalues of 556 are 

AH(L) = x (2) @f&G* 3 'r mH(L) -2 H(L) * (4.9) 

Here, rnH(L) are the masses of BH(L), respectively, and ~-H(L) are their widths. 
Note that since !%f12M21 is real and positive, so that hi and hi have the same 
imaginary part, the widths of BH and BL are equal: 

rH = r~ = r . (4.10) 

(To a very good approximation, this equality holds even if the SM diagram of Fig. 2 
is not a good approximation to A(Bd + &). This is simply because, unlike KS and 
KL, neither B mass eigenstate has a special decay mode which is an appreciable 
fraction of its decays and which is unavailable to the other mass eigenstate. Thus, 
BH and BL have approximately equal widths.) 

From Eqs. (4.7) and (4.9), the mass eigenstates 1 BH(L)) are given by 

lBH(L,) = ~[l~d)~~~~-2’6~psi)] * (4.11) 

Here and hereafter we assume that 3621 does come from the SM diagram of Fig. 2. 

Owing to the Bd -a d mixing, a neutral B at rest which at time t = 0 is a 
pure 1 Bd) will not remain that way. Rather, in time t it will evolve into a state 
1 B&t)) which is a coherent superposition of 1 Bd) and IF,-. From Eqs. (4.91, (4.111, 
and S&r&linger’s equation, it is straightforward to show that 

IB&)) = e-l ‘( 1 m-i: L{+d) - ie-wL4s,~)} . (4.12) 



lere, 

mH+mL mr 
2 (4.13) 

s the average BH, BL mass, 

Am=mH-mL 

s the BH - BL mass difference, and 

C E cos <+>, Sb.n(~)~ 

(4.14) 

(4.15) 

Tote from Eq. (4.12) that, before it decays into some fInal state, a neutral B meson 
vhichattimet= 0 is a pure 1 Bd) oscillates between being a 1 Bd) and a 1 Kd). This 
x!illation has been observed,6 and it is found that 

ARGUS & CLE07 

LEP6*8 

Thus, before a typical B decays, it undergoes a non-negligible fraction of one oscil- 
lation. 

Suppose, now, that f is a f5na.l state into which both a pure Bd and a pure Kd 
can decay. Examples of such a &al state are p+x-, D’K,, x+x-, and Y&. Let rt(t) = 
r(Bd(t) + f) be the time-dependent probability for the time-evolved particle Bd(t), 
which at t = 0 was a pure Bd, to decay into f. From the wave function for B&t), Eq. 

(4.121, rfit) is given by 

rf(f) = /CflTI&(f))f = e-rt/Z(fl~Bd) - iee2”Fm slfiT,E&)i2 , (4.16) 

Let us now assume that the decay amplitudes (f 1 T 1 Bd) and (f 1 T I &) are each 
dominated by a single Feynxnan diagram. Then 

MTjBd) = M&f eias , (4.17) 

where M is the magnitude of the diagram which dominates (f 1 T I Bd), ScfKM is the 
phase of the product of CKM elements to which this diagram is proportional, and 
czs is the strong interaction phase of the diagram. Similarly, 

#‘IG) = ~$&M~=s , (4.18) 



where iv, -8cfa, and -& are respectively the magnitude, CDI phase, and strong 
phase of the diagram which dominates (f 1 T I Bd. From Eqs. (4.16)-(4.18), we then 
have9 

l-f(t) = emrt (c2M2 + SW - 2cslmsinicp+(Ps)~ , (4.19) 

where 

q7s26&4+c$KM+i&j4 (4.20) 

is the relative CKM phase of the two interfering amplitudes in Eq. (4.16), and 

W=arS- S (4.21) 

is their relative strong phase. 

The W-mirror image of the decay B&t) + f is the process K&t) + c where 
cd(t) is the time-evolved particle which at time t = 0 is a pure &. As before, when 
we go from a process to its CP-mirror image, the CKM phases reverse, but noth- 
ing else changes. Thus, from the expression (4.19) for l-f(t), we may infer that the 
probability $(t) = IY&(t) + 6 is given by9 

rT(t) = eeR (c2M2 +s~-2csMmsin(+p+cpg)~ . (4.22) 

Now, since B&t) + f and Ed(t) + Farare CP-conjugate reactions, CP invari- 
ance would require that rf(t) = F$t). Comparing Eqs. (4.19) and (4.22), we see that 
when cp # 0, this requirement is violated. Note that, as always, the CKM phase cp 
produces this CP violation through an interference; in this case the interference 
between the two terms in Eq. (4.16), or between their analogues in K&t) + E 
Physically, the first term in Eq. (4.16) corresponds to a Bd remaining a Bd and 
decaying directly into f. The second term corresponds to a Bd evolving, through 
mixing, into a &, which then decays into f. 

Recalling that F and Am are already known, it is trivial to see from Eqs. 
(4.19) and (4.22) that measurements of the functions Fdt) and i=T(t) will determine 
M, n, s+ = sin (cp -t- cp,) and s, = sin (q + qQ. Once s+ and s- are known, one can 
find sin2cp, up to a two-fold ambiguity, by using 

s&?+5+s~+~~] . (4.23) 
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Tote that, apart from the discrete ambiguity, this expression gives a theoretically 
lean value for six&. This value does not depend on any unknown or difficult-to- 
alculate parameters. This value can be compared directly to the prediction from 
he CKM matrix to test cleanly whether phases in this matrix are indeed the 
ource of CP violation. 

As we have seen, the CI(M phase cp which is probed in a given decay, B,(t) + 
. is the relative CKM phase of the two interfering terms in Eq. (4.16). That is, 
,ecaiiing Eq. (4.6), 

v = CKMPhase 
c 

44 + f) 
A@, Y B,) A(B, + f) 1 ’ 

(4.24) 

vhere “A” denotes an amplitude. As an example, in &j(t) + p+x-, we expect A(& 
+ p’x’-) to be dominated by the diagram in F’ig. 3. Similarly, we expect Ed + p’x- to 

,e dominated by the diagram in Pig. 4. 

d 

Figure 3. The diagram which dominates &j + p+X. 

b Vub 

a 

Figure 4. The diagram which dominates G + p’x-. 

The mixing amplitude A& + Kd) is dominated by the diagram in Fig. 2. Thus, in 
h(t) + p+f, 



I- 1 1 Q, = +vtiv;:*v; ] . 
= 2ar&&J$J$~] 

(4.25) 

In a similar way, one may easily find what CKM phase cp is probed by any particu- 
lar decay. Note that since each of the amplitudes in Eq. (4.24) is always propor- 
tional to some product of CKM elements (assuming each amplitude is dominated 
by one diagram), cp is always the phase of some product and quotient, or equiva- 
lently of some product, of CKM elements. 

The neutral B decay rates, and the extraction of a CKM phase from them, 
become particularly simple when the final state f is a CP eigenstate. Examples of 
such a fiial state are x+x- and (neglecting CP violation in the kaon system) YKS. 
When f is a CP eigenstate, we have 1 f) = CP I f) = T\f/ f), where qf is the CP parity of 
10. Then(f]T1K& =qrcf\TI&). N ow, Kd is the CP conjugate of Bd, and Tis the 
CP conjugate off, so fll T I Ed ) is the CP conjugate of (f 1 T I Bd). As before, CP-con- 
jugate amplitudes have opposite CKM phase but are otherwise identical. Thus, 
fi=om Eq. (4.17), when f is a CP eigenstate, 

cf[rlq = yj&s!, eiaS . (4.26) 

Using this relation and Eq. (4.17) in Eq. (4.16), we find that 

rfw = M2e91 - qf sincp sixdAm t)) , (4.27) 

where cp, the relative CKM phase of the two interfering terms, is now given by 

p=2(&M+dcKM) . (4.28) 

For the CP-mirror-image decay, &(t) + f, the decay rate rt(t) must be the same as 
rfct) except for a reversal of the CKM phase. That is, 

Fdt) = M2eWrtIl + qf sincp sin(Am t)} . (4.29) 

Now, Am is known, as is the CP parity qf of any particular f?nal state f of interest. 
Thus, the CP-violating asymmetry between Ff(t> and rdt), 

q(f) - rfw 
II + ” 

= Tpn4,sin(hf) ) (4.30) 

I.6 



leanly determines the CKM phase quantity sincp.l” 

It should be emphasized that the ability to cleanly extract CKM phase 
nformation from decay rates does depend on the assumption that (f 1 T 1 Bd) and 
f 1 T I&) are each dominated by one Fey-nman diagram. When (f 1 T 1 Bd) or (f 1 T 1 I$& 
nvolves several competing diagrams with different CKM phases, the rate for B&t) 
+ f involves several interferences, rather than just one, and no longer cleanly 
letermines any one relative CKM phase of two amplitudes. Fortunately, in at 
-east some of the decay modes of greatest interest, there are strong reasons for 
lelietig that one diagram does dominate.11 

1.2. Future Experiments 

In Section 3, it was argued that CP-violating effects in B decay can be large. 
‘fle now see, for example, from Eq. (4.30) for the asymmetry in decay to a CP 
3igenstate, that these effects can indeed be large. If the CKM phase quantity sincp 
in the asymmetry (4.30) is O(l), then obviously the asymmetry itself is O(1). 
However, it will take a large sample of B mesons to observe even a large CP-violat- 
ing asymmetry. The reason is that each of the asymmetries on which the experi- 
mental search wiU focus occurs in the decay to some specific fmal state, or CP- 
conjugate pair of fkal states, and the branching ratio for B decay to any of the 
final states of interest is rather small. Thus, a lot of B mesons will be required 
before a CP-asymmetry in some particular decay mode can be seen. 

As an example, consider the CP eigenstate final state f = YK,. If the decay 
rate r[Bd(t) + YK,] is measured by observing N events, the measurement has a 
statistical error of order T/N. Similarly for rmd(t) + YKJ. Thus, if the asymmetry 

I-p&) + YK,] - I-[B&) + WC,] 
tt + ,I (4.3 1) 

is, for example, of order 0.1, we must have dN<< (O.l)N in order to measure it with 
any accuracy. Hence, we require N > 103. Now, typically a Y is detected via its 
decay to p’p- or e+e’. Since only 12% of ‘-I! particles decay in this way, we need - lo4 
B&t) + Y’K, events in order to detect lo3 of them. Furthermore, BR(Bd(t) + Y&J z 
4x10 . 4 2 Thus, to dete ct lo3 Bd+Y’K, decays, we need -lo8 Bd mesons. For other 
typical decay modes of interest, the number of Bd mesons required is similar. 
However, the total number of Bd mesons recorded to date at CESR, for example, is 
only -5x10 6 12 To . produc e and study enough B mesons to measure CP-violating 
asymmetries in the B system, future experiments are being planned for hadron 
facilities, and special high-luminosity e+e- colliders (“B factories”) are being built 
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at SUC and KEK. The experiments to be done at the hadron facifities and the B 
factories will complement each other nicely. 

To experiment&y compare the rate for B&t) + f with that for &(t) + F(or, 
when f is a CP eigenstate, that for B&t) + f), we must, of course, be able to di&in- 
guish a B&t) from a &(t). That is, we must be able to tag the B as having been a 
pure Bd, or a pure &, at some specific time t = 0. Several methods for doing this 
are being considered. Let us briefly review them. 

At the B factories, B mesons wil.I be produced in pairs via the reaction 

e+e- -+ Y(4s) + Bdgd . (4.32) 

Since the Y(4s) [the upsilon(4s)l has intrinsic spin S = 1, and B mesons are spin- 
less, the B pair created in this reaction will be in a p wave. Now, after it is pro- 
duced, each B meson in the pair will evolve, thanks to mixing, into a coherent 
mixture of pure Bd and pure &. However, at no time can one have two identical 
bosons in an antisymmetric state such as a p wave. Thus, if at some time which 
we shall call t = 0, one of the B mesons in the pair decays in a fashion which re- 
veals that at the instant of decay it is, say, a &, then, at the same instant, the 
other B meson in the pair must be a Bd. That is, the decay of the one B at t = 0 tags 
the remaining B as a B&t). This type of tagging is an interesting modern applica- 
tion of the quantum mechanical correlation first discussed by Einstein, Podolsky, 
and Rosen (the EPR effect). 

What kind of neutral B decay will reveal that at the instant of decay the par- 
ent was a &? An example of such a decay is semileptonic decay, the diagrams for 
which are shown in Fig. 5. From these diagrams, we see that a positively-charged 
lepton f‘ can come only from a Bd, and a negatively charged one !- only from a &. 
Thus, the charge of the lepton tells us whether, at the instant of decay, the parent 
was aBdora&. 

A typical B factory experiment might study the decay chain 

e+ + e- + Y(4s) + B + B , (4.33) 

L, f 
P)+ . . . cp 

where -!C+) + . . . is a semileptonic final state and fcp is a CP eigenstate. Let us 
consider this chain in the Y(4s) rest frame. In this frame the B mesons are quite 
nonrelativistic, so we may, for the moment, neglect their motion, and take B-rest- 
frame proper times and Y(4s)&ame times to be indistinguishable. Changing the 

la 
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Figure 5. The diagrams for semileptonic neutral B decay. 

The symbol k’ denotes a charged lepton. 

notation, let us now call the time of the decay Y(4s) + B + B, t = 0; the time of the 
decay B + P) + X, te; and the time of the decay B + fcp, tcp. The probability that 
3ne B will decay semileptonically at time te is proportional to exp[-IX!]. The proba- 
bility that the other B will live at least until time te is proportional to a second fac- 
tor of exp[-rte]. If the B undergoing the semileptonic decay yields an k’- cl+>, then 
at time te the other B must be a pure Bd (&I. Thus, the probability that this B will 
decay to fcp at time tcp is given by Eq. (4.27) [Eq. (4.29)] with f taken to be fcp. l&lost 
importantly, in applying Eq. (4.27) or (4.291, we must take the time variable, which 
as we recall represents the time of the decay to the CP eigenstate relative to the 
time when the parent was known to be a pure Bd or & , to be tcp - te. Combining 
all factors, we have for the joint probability of the two B decays in (4.33) 

Probability One f3 + & T ) +Xattimet,; OtherB+fCp attime&-p 

I 

oc e-rt,e-rt,e-r(t cp-tr) 
1 

l(T) ‘7fcp sin cp si+h( to - te )] . (4.34) 

=e -r(fCp+fr) l(7) qfcp sinpsin[A??z(tcp - te)] 



Although it is not obvious from what has been said, this result is true even if tcp is 
earlier than te. 

To take the (so far neglected) motion of the B mesons in the Y(4s) rest frame 
and all the requirements of relativity into account, we may replace the treatment 
above by one in which we do not speak of the semileptonic decay of one B as deter- 
mining the Bd or & nature of the other 8. Rather, we simply calculate directly the 
amplitude for the entire decay chain (4.33).13 This amplitude approach also has 
the advantage of avoiding a puzzling question raised by the treatment based on the 
EPR effect: How does the second B know the charge of the lepton produced in the 
decay of the first B, and how does it know when that decay occurred? For the joint 
probability of the two B decays in (4.331, the amplitude approach yields precisely 
the same result, Eq. (4.34), as the EPR approach, provided that the times in that 
result are taken to be proper times in the B rest frames, rather than times in the 
Y(4.s) rest frame. The time tt must be taken to be the proper time elapsed in the 
frame of the semileptonically decaying B between its birth and decay, and 
similarly for tcp. 

Suppose one does an experiment in which there is not enough resolution to 
measure the decay times te and kp, so one simply measures the time integral 
over the joint decay probability (4.34). The contribution to this time integral of the 
term in (4.34) proportional to sinrp, the quantity one would like to determine, 
vanishes. This is because 

~~dt,IOmdtCpe-r(tcp+~c)sin[hm(tCp - te)] = 0 (4.35) 

by the antisymmetry of the integrand under te t) tcp. Thus, to determine sinrp 

with neutral B mesons at a B factory, one must be able to measure the B decay 
times, at least to some extent. To measure the decay time of a B, one would deter- 
mine the pathlength it covers before decay and its energy. Now, in every e+e- 
collider built so far, the e+ and e- beams have equal and opposite momenta, so that 
in the reaction e+e- + Y(4s) + BB, the Y(4s) is at rest in the laboratory frame. 
Thus, at these colliders, one would be trying to determine the B pathlength in the 
Y(4s) rest frame. However, as already mentioned, in this frame the B mesons are 
quite nonrelativistic. In fact, they are so slow (p 
1.6~10~~~ sec,8 

= 0.06) that, before decaying in 
a typical B covers only -3Opm. Pathlengths this short cannot be 

measured. To make the B pathlengths long enough to be measurable, the SLAC 
and KEK B factories will be asymmetric colliders. That is, in each of them the 
positron beam will have a different energy from the electron beam. As a result, 
the Y(4s) formed in the e+e- collision will be moving in the laboratory, and will 
transmit its motion to its daughter B mesons. The asymmetry between the beam 



nergies will be sticient to lead to B mesons which typically will travel -200~ 
efore decaying. Such a distance is large enough to be measured. 

Another method for tagging, which may prove useful at hadron facilities, is 
ased on the expectation that some fraction of the neutral B mesons made at those 
&l.ities will be created via the production and decay of a B**. By B** we mean an 
xcited B meson heavy enough to decay to B + x. Such mesons are expected as p- 
rave quark-a&quark bound states, and are observed at LEP.8 Now, as Fig. 6 
x&es clear, a B**+ decays to Bdx+, but a B**- to &-. 

I3 **+dF” B**2+-q 
“-*,- 

Figure 6. The diagrams for B**+ + B&+ and B”- + G x-. 

Suppose, then, that in some event one finds a neutral B and a charged x which 
ze close to each other in phase space and whose momenta are such that the 
invariant mass of the Bx system is the known mass of a B**. Then, neglecting 
background and assuming that the Bx system came from a B**, if the charge of 
the n is positive (negative), we can conclude that, at the moment of its production 
in B** + Bx, the neutral B was a pure Bd (Bd ).I4 Results from LEP8 suggest that 
the fraction of B mesons made via a B** may be appreciable at hadron facilities, so 
this method of tagging may be quite helpful. 

4.3. What There is to Measure 

As we have seen, the CKM phase (p which is probed by CP violation in any B 
decay is the phase of some product of CKM elements. What, then, are the inde- 
pendent phases of all possible products of CKM elements? That is, what is there to 
measure? 

The answer to this question grows out of the fact that, in the SM, the CKM 
matrix must be unitary. The requirement of unitarity demands, among other 
things, that any pair of columns of the CKM matrix be orthogonal, and similarly 
for any pair of rows. Thus, we have the six orthogonality constraints 



ds vudv*us + v&*,, + vtdV_*ts = 0 

sb v-V*,& + VcsV*& + VuV*tb = 0 
A4 A2 A2 

db vdv*& + v,dv*,b + vtdv*tb = 0 
A3 A3 A3 (4.36) 

UC vudv*cd + v,v*,, + vubv*cb = 0 

A A A5 

ct vcdv*td + v,,T&, + &by = o 
A4 

ut &dv*td + v,v*, + v&v*tb = 0 
A3 A3 A3 

To the left of each constraint is indicated the pair of ~ohunns, or of rows, whose 
orthogonality is expressed by that constraint. Under each term in each constraint 
is given the rough empirical size of that term, expressed as a power of the Cabibbo 
angle h = 0.22. Each term in any of the constraints may be pictured as a vector in 
the complex plane. The constraint then states that its three terms form the sides 
of a closed triangle, called a “unitarity triangle”,15 in the complex plane. The six 
unitarity triangles corresponding to the constraints of Eqs. (4.36) are shown, 
somewhat schematically, in Fig. 7. As we see from Eqs. (4.361, in two of the trian- 
gles, the three sides are of comparable size, so that the interior angles can all be 
large. However, in each of the remaining triangles, one of the sides is much 
shorter than the other two, and the angle opposite this short side must be small. 

Any angle in one of the unitarity triangles is, of course, (apart from an 
extra x) just the relative phase of the two adjacent sides. Thus, this angle is the 
phase of a product of CKM elements. Furthermore, the product concerned will 
always be one whose phase is convention-independent. For example, the relative 
phase w of the two sides adjacent to the angle 01 in the db triangle is arg 
(VtdV*tbV*udVub). Now, this phase is invariant under phase redefinition of the t 
quark, since this redefinition causes equal and opposite phase changes in Vtd and 
V*tb. Similarly, w is invariant under phase redetition of the u, d, or b quark. 
Thus, the angles in the unitarity triangles do not depend on phase conventions. 



sb 
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Figure 7. The unitarity triangles. To the left of each triangle is indicated the pair of 

columns, or of rows, whose orthogonality this triangle expresses. The significance of 

the angles labeled a, p, y, x, and x’ is explained in the text. 

Now, it can be shown that if cp is the phase of any phase-convention-independent 
product of CKM elements (that is, if cp is the CKM phase probed in some experi- 
ment on CP violation), then16 

cp= n& +-n@ + na + nxx’ . (4.37) 

Here, a, p, x, and x’ are the four unitarity triangle angles identified in Fig. 7, and 

na, q, nX, and nx’ are integers. From Eq. (4.37), we see that, presuming a, p, x, 
and x’ are independent, these four angles may be taken to be the independent 



phases of a.II possible (convention-independent) products of CKM elements. The 
CKhI phase cp probed by any CP experiment is a simple linear combination of 
these four angles. The future experiments on CP violation in the B system may be 
thought of as, in part, an attempt to determine these four angles. 

It can be proved that, once they are known, CX, 6, x, and x’ completely de- 
termine the entire CKM matrix.16 Since, as is well known, it takes four indepen- 
dent parameters to determine this matrix, it follows that a, p, x, and x’ must 
indeed be independent, as we just assumed. Furthermore, since a, f3, x, and x’ do 
completely determine the full CKM matrix, CP experiments in the B system are 
not merely measurements of angles in the unitarity triangles, but, in principle at 
least, probes of the entire content of the CKM matrix.17 

From the magnitudes of the terms in the “dsn orthogonality constraint of 
Eqs. (4.361, we see that the angle x’ in the ds unitarity triangle is at most of order 
A’/ A, or 2x10m3 radians. Thus, in a B decay where the CKM phase cp which is 
probed is x’, the CP violation would be very small. As a result, it may not be possi- 
ble to measure x’. However, plans are being developed, and facilities being con- 
structed, to measure the three remaining independent angles, a, f3, and x. 

Wolfenstein has introduced a very good (-3%) approkmationl* to the CKM 
matrix V which is based on the empirical observation that, as far as the magni- 
tudes of its elements are concerned, V has approximately the form 

(4.38) 

The implications of the magnitudes summari 
(4.36) have air d b 

zed here for the unitarity constraints 
ea y een indicated beneath them. In Wolfenstein’s approximation, 

in effect one neglects the small term in the ds constraint of Eqs. (4.36) relative to 
the larger terms, and does the same in the sb constraint. The ds and sb unitarity 
triangles then each collapse to two antiparallel lines of equal length, and the an- 
gles x’ and x vanish (cf. Fig. 7). Of the four independent unitarity-triangle angles 
originally present, only the angles a and p, in the db triangle, remain. These 
angles, and the dependent angle y = x - a - p in the same triangle, are in any case 
the angles on which the early CP experiments on the B system will concentrate, 
since they are the angles which may be large and which, therefore, may produce 
large CP-violating asymmetries. Consequently, in the literature, attention has 
been focused on the db triangle. 



The program to test the SM of CP violation through experiments on B 
decays may be summarized as follows: 

1. Measure the four independent angles of the unitarity triangles. If the smallest 
angle, x’, is beyond reach, at least measure a, 0, and x. Focus first on a and p, 
since these angles may both be large. 

2. To see whether the SM provides a consistent picture of CP-violating phenom- 
ena, or leads to inconsistencies which point to physics beyond the SM, overcon- 
strain the system as much as possible. To do so- 

a. Measure, if possible, CP asymmetries in different decay modes which, if 
the SM of CP violation is correct, all yield the same angle Cp, for example). 
See whether these asymmetries actually yield the same numerical result. 

b. Measure independently the angles a, p, and -{ in the db triangle, and see 
whether these angles actually add up to x. 

c. Measure the lengths of the sides of the db triangle (via experiments on non- 
CP-violating effects such as decay rates and neutral B mixing). See whether 
the interior angles implied by the measured lengths agree with those in- 
ferred directly from CP-violating asymmetries. 

Table 1. Decay modes and the CKM phase angle q~ which they probe. In the final 
state Y K*‘, the I(*’ is required to decay as shown. Similarly for the final state 

b-bK+; gcp is a CP eigenstate, such as x+x- or K%-. References are given in the 
last column. 

Decay Mode 

B&t) + x+x-, p+~-, al+x- 

&j(t) -+ ‘l’&, ‘I%*’ 

L, K,xQ 

B,(t) + D,+K- 

B+ + 6k+ 

L, gcp 

cp Ref. 

2a 11,9,19 

2P 10,20 

y+2x--x* 21 

Y-X’ 5 

B,(t) + W 2x 22,23 

25 



In Table 1 are listed some decay modes which (in combination with their 
CP conjugates) are potential probes of the independent angles a, /.3, and x, and the 
dependent angle y . In this table, B,(t), in analogy with Bd(t), is the time-evolved 
state which at time t = 0 was a pure Bs. The B+ decay listed is one of the excep- 
tional charged B decays from which clean CKM phase information can be ex- 
tracted. Note that, neglecting x and x’ relative to ?I, the decays B,(t) + D,+K- and 
B+-&oK+( gcp)F? both yield the latter angle. 

5. Testina the SM of CP Violation in the K System 

The future tests of the SM of CP violation will include experiments on the 
neutral K system, where CP violation was discovered. Before discussing these 
experiments, we shall introduce a phase-convention-independent description of 
CP violation in this system. Such a description has several advantages. First, it 
clarifies the meaning of the phases which have been experimentally observed. 
Secondly, it makes possible a useful test for errors in theoretical calculations. 
Namely, if one computes the theoretical prediction for an experimental observable 
using nothing but convention-independent variables, then it is easy to check by in- 
spection that the prediction is convention-independent, as it must always be. If it 
is not convention-independent, then one has made a mistake. 

With the convention-independent description of CP violation in hand, we 
shall discuss past experiments on the kaon analogues of the time-dependent B&t) 
decays we considered in Section 4.1. Finally, we shall turn to future kaon experi- 
ments. 

5.1 Convention-Free Description of CP Violation 

The etistence of different phase conventions arises from the freedom to 
redefine any quantum state by multiplying it by a phase factor. To develop a 
phase-convention-free formalism, we must express every quantity of interest in 
terms of variables that are manifestly invariant under such phase redefinitions of 
the states. 

When the phases of the states 1 Kc) and I?), and in particular their relative 
phase, are arbitrary, we have 

CP lK4 = dii4, 

where o is a phase factor. Elementary field theory then implies that 

(5.1) 

CP I@> = w*IKo) * (5.2) 



‘hus, within the neutral K system, in the K*, Ti” basis, the operator CP is the 
matrix 

0 o* 
CP= [ 1 0 0 * (5.3) 

‘rom this matrix, we see that within the neutral K system, 

(CPV = CP = CPT ) (5.4) 

.nd 

(CP)2 = I , (5.5) 

There I is the identity matrix. From this last relation, it follows that the neutral 
:aon CP eigenstates, 1 K1+2), are given by 

IKwJ = d2 ~[lK")~~)cPp)] ) (5.6) 

CP i K1(2)) = A 1 K1(2)) . (5.7) 

In Eqs. (5.61, the overall phases 91.2 are arbitrary. However, when, as in either of 
Eqs. (5.61, a state is expressed as a coherent superposition of several components, 
the relative phases of the components had better not be arbitrary, because the con- 
tributions from these components can interfere, with physical consequences, 
when the state decays. To make this non-arbitrariness manifest in each of Eqs. 
(5.6), we have written both components on the right-hand side in terms of the 
same state, I Ko}. It is then obvious that no arbitrary relative phase is involved. 
(An operator, such as the CP operator in Eq. (5.6), does not introduce arbitrary 
phases. These come only from states, or from the matrix elements of operators 
between states.) 

Let us now turn to the neutral K mass matrix M of Eq. (2.4). The diagonal 
elements of this matrix are convention-free, since the arbitrary phase of the state 
I K”) obviously cancels out of M11= (Ko I MI Ko) and that of I?) cancels out of M22 = 
(? I Ml?). Thus, the CPT constraint that M11= M22 = X holds in any convention. 

The eigenvalues of M-the complex masses of the mass eigenstates IQ and 
KL-are 



k(L) = x A GZG (5.8) 

that, as the notation implies, the eigenvalue X + I/= 
Ml@&) corresponds to the KS (KL). Being physically observable, these 

eigenvalues cannot depend on conventions. As we have just seen, X is indeed con- 
vention-free, and Ml2M21= <K” 1 MIK”>(? 1 Ml K”) clearly does not depend on the 
phase of any state either. 

The eigenstates belonging to the eigenvaiues AS(L) are, respectively, 

(5.9) 

Here, Q(L) are arbitrary phases, and 

.KO K 
I > 

0 . 
)IK ) 1 (5.10) 

The arbitrary phase of the state 1 Kc) obviously cancels out of p, so this quantity is 
convention-free. Hence, so too is the relative phase of the two terms on the right- 
hand side of Eqs. (5.9). 

In terms of the CP eigenstates, the mass eigenstates 1 KS(L)) of Eqs. (5.9) are 

(5.11) 

Here, 

and 

F > l(2) = e-I*(*)( h(2)) 9 (5.12) 



Iote that Eis convention-free, and that, from Eqs. (5.12) and (5.61, the same is true 
$f the relative phase of 1 ayj and I &>. Thus, the relative phase of the two terms on 
he right-hand side of Eqs. (5.11) is independent of conventions. 

When the neutral kaon mass matrix flfis CP-invariant, we have (CP)-1MCP) 
= M, so that M(CP) = (CP)M, and consequently r vanishes. Thus, r is a convention- 
ree measure of CP violation in the neutral K mass matrix. 

As we noted earlier, CP violation in the neutral K system is small. From 
;he fact that the amplitude for KL + xx is much smaller than that for KS + xx 
lsee Eqs. (2.11) and (2.12)], and the fact that CP(xx) = +l, we know that it is Ic;s 
Aich is close to being a CP-even eigenstate of CP, and KL which is close to being 
I CP-odd one. From Eq. (5.131, we see that when CP-noninvariance of !M is 
small, E is small. Thus, it is clear from Eq. (5.11) that the mass eigenstates we 
3ave labeied U f K&” and U f KL)” are indeed respectively the 1 KShort) and 1 Kr.,ong). 
Hence, the corresponding eigenvalues, “Xs” and “1~” of Eq. (5.81, are indeed re- 
spectively the complex masses of &hort and ~~~~~~ 

In studying the decays of neutral kaons to a final state f, it will be useful to 
have the convention-free parameter 

VrnKL,( KL IKO) 
T=jjqJo * (5.14) 

When f is a CP eigenstate with even CP parity, Tf would vanish in the absence of 
CP violation, and serves as a convention-free measure of this violation. 

In the literature, discussions of CP violation in the kaon system are almost 
always carried out within specific phase conventions. Almost universally, these 
discussions adopt the convention that (ps = 9~ = 0 in Eqs. (5.9) for the states 1 KS(L)). 
They also adopt the independent convention that 91 = ‘92 = 0 in Eqs. (5.6) for 
1 K(l(2)). Finally, they choose the additional convention that o = +1 in the CP rela- 
tion (5.11, as we did in Section 2. Alternatively, they choose w = -1. 

In the literature, neutral kaon decay to the final state f is commonly 
described in terms of the parameter 

cflvk> 
qf = (@IKs) ’ 

(5.15) 



especially when f is a 2x state. We note that the phase of qf depends on the conven- 
tions for the phases of I KJJ and I KS). Now, from Eqs. (5.9)) we see that in the con- 
vention where (ps = COL, (KL 1 Ko) / (Q I Ko) = I. TINLS, in this convention, 

Tf = T\f * (5.16) 

That is, our rf is a convention-free analogue of the traditional parameter qf, and 
the two agree in the most commonly used convention for the phases of I KL) and 
Iw. 

The violation of CP in the neutral K mass matrix M is traditionally de- 
scribed in terms of the convention-dependent parameter E, which may be defined 

b 

E = Pwd 
-(K2IKL) . 

(5.17) 

When Mis CP-invariant, KL has no CP-even (i.e., Kl) component, so E vanishes. 
F’rom Eqs. (5.13) and (5.6)) 

E = &P2 - 01) E . (5.18) 

Thus, ris a convention-free analogue of E, and in the popular phase convention 

where cp2 = cp1 = 0, the two agree.24 

5.2. Some Existing Observations of CP Violation in the K System 

In Section 2, we already mentioned two CP-violating effects which have 
been seen in neutral kaon decay. The first of these is the decay of KL, which in the 
absence of CP violation would have CP = -1, to xx, which has CP = +l. Since 

(K~k'?UyS~ti' 1s just a phase factor [see Eqs. (5.9)], we see from Eqs. (2.11) and 
(2.12) that the magnitudes of r+- = TX+- and ~~ = ~+1p are both approximately 
2.28 x 103, and, within errors, are equal. The second CP-violating effect we men- 
tioned is the charge asymmetry 6 of Eq. (2.13). 

There is a third observed CP-violating effect, closely related to the decay KL 
+ xx, and to the non-exponential decays of B&t) mesons to CP eigenstates de- 
scribed by Eq. (4.27). This effect is found in the decay K”(t) + f of a time-evolved 
neutrai K, which at time t = 0 was a pure K”, into the final state f = +c- or f = 
&co. Now, the 1 KN) (N = S or L) mass eigenstate component of a K” evolves in 
time t into 1 KN)eXp(-ihNt). From this fact and Eqs. (5.9) and (5.14), it is trivial to 
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how that the time-dependent probability for the decay I&t> + f, lXK”(t> + 0, is 
iven by 

r(K’(f) +f) = e-‘st +liff/2e-rLt + 

+$fle 

(5.19) 

Iere, we have written the complex mass AN of KN as rnN - ir~/2, where mN is 
he mass of KN and r~ is its width. The mass difference ArnK is defined as mL - 
q, and Ff is the phase of rf. Note fkom Eq. (5.19) that because both the KS and KL 
omponents of a I?(t) can decay into xx (in violation of CP), the rate for K?t) + xx 
.eceives a contribution from the decay of the KS component, another from that of 
he KL component, and a third from an interference term. 

A fourth observed CP-violating effect, very similar to the one found in K”(t) 
+f, is seen in the decay of neutral kaons produced by a regenerator. The regener- 
itor is a slab of material on which is incident a pure KL beam-a neutral K beam 
from which the KS component has long since decayed away. The regenerator 
recreates a KS component in this beam. It is able to do so because a KL is a coher- 
ent superposition of Kc and ?, and the amplitudes for the latter two particles to 
scatter in a material medium differ. Thus, what emerges from the medium will 
be a d.ifYerent K”-? superposition f?om the one which was incident. That is, the 
emerging kaon beam wilI contain a KS component. In particular, if a kaon enters 
the regenerator as a pure 1 KL), it wilI emerge in the state ( Kr) given by 

IKJ = IK~(KLR~T~KLB)+ IWKSRITIKLR) . (5.20) 

Here, R stands for the regenerator, so that (KL(s)R I T 1 KLR) is the amplitude for 
the regenerator to emit a KL (IQ=$ when a KL is incident. Now, tier a time t in the 
rest frame of the kaon 1 K,), its 1 KN) @I = L or S) mass eigenstate component will 

, into the state have evolved into exp(-iANt) I KN). Thus, the I &) WU have evolved 
I & (t>) given by 

1 K,(t)) = e-ALt I KL)(Kfi I T I KG) + e-ht I K&(&R I T 1 KG) . (5.21) 

Omitting an irrelevant overall constant, the amplitude for this time-evolved kaon 
to decay to the final state f, (f I T I KAt)), is just 

(f 1 T 1 K,(t)) = rf e-att + Fe-i@ . (5.22) 

Here, ris the convention-free KS regeneration amplitude defined by 
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(wl-m~) (KL lKO) 
T = (wqqw) (KS (KO) - 

(5.23) 

From Eq. (5.22), the probability IYK,(t) + f) for a neutrai kaon to decay to a final 
state fat a proper time t after emerging from a regenerator is given by 

T(K&) +f) = (+k-rst+ jii+‘e--~~t + 

+ 2 1 F I I @I e4rS+rL)t/2 cos(Ama + Cpr - T$ . (5.24) 

Here, ‘pr is the phase of F. If f is a xx state (hence CP-even), only the first term in 
Eq. (5.24) would be present were it not for CP violation. 

Through experimental studies of & - KL interference terms such as those 
in UKo(t) + 0, Eq. (5.19), and r&(t) Y f), Eq. (5.24), we have learned that25 

hIlK= (3.4894 f 0.0073) PeV , (5.25) 

that= 

‘p+- = =g (T+-> = (43.56 zk 0.56)’ , (6.26) 

and that2 

Th = arg trod = (43.5 f 1.0)” . (5.27) 

In the literature, the numbers quoted in Eqs. (5.26) and (5.27) are referred to, re- 
spectively, as “the phase of r~+” and “the phase of ~7~~“. In the most popular phase 
convention, in which qf = rf, these numbers do have this significance. However, 
they do not have this meaning in general, since, as we have noticed, the phase of 
T\f, Eq. (5.151, depends on conventions. The convention-free quantities whose 
phases, in any convention, have the values quoted in Eqs. (5.26) and (5.27) are, 
respectively, r+ and TO,. 

5.3. Indirect and Direct CP Violation 

There are two ways in which CP can be violated in neutral K decay. First, it 
can be violated as a consequence of the CP-noninvariance of the neutral K mass 
matrix, which causes the mass eigenstates Q and KL to deviate slightly from 
being pure CP eigenstates. When the KL, while dominantly the CP-odd state K2, 
contains a small admixture of the CP-even state Kl, as in Eq. (5.11), it can decay to 
the CP-even state x+r through its K1 component. It can do this even if the actual 
K decay amplitudes conseme CP, so that (tilt I T 1 K2) = 0. 
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The violation of CP stemming from the fact that IQ and KL are not CP 
igenstates is called “indirect CP violation”. 

The other way in which CP can be violated is through the decay amplitudes 
hemselves. Examples of possible CP violations in K decay amplitudes would be a 
.onvanishing value of the CP-changing decay amplitude (x+x- 1 T I K2), or a non- 
anishing value of the difference (&+v 1 T I K”) - (x+.H 1 T 12) between the ampli- 
udes for two CP-mirror-image processes. 

The violation of CP in decay amplitudes themselves is called “direct CP 
iolation”. 

Suppose that f+ is a CP-even final state. Suppose further that there is no 
iirect CP violation. Then (f+ 1 T 1 I&) = 0. Thus, from Eqs. (5.14), (5.11), and (5.9), 

(5.28) 

That is, when there is no direct CP violation, the parameters Tf+ for different CP- 
zven final states f+ are all equal. In particular, they are all equal to F. Now, Eq. 
(5.13) clearly implies that 

(5.29) 

This expression makes it particularly obvious that r vanishes when M is CP 
invariant. Since eis small, the two terms in the denominator D of Eq. (5.29) are 
approximately equal. Thus, from Eqs. (5.3) and (5.8), 

D 3 4&&%&21 = 2(7cs-ktL) . (5.30) 

The numerator N of Eq. (5.29), being convention-independent, may be evaluated in 
the convention where the o of the CP relation (5.1) is unity. In this phase convention, 

N = Myp~l . (5.31) 

Now, it can be shown that in the difference M-12 - M&, the dispersive part of the 
matrix element dominates strongly over the absorptive part.26 Furthermore, the 
dispersive part of Ml2 is real and equal to that of MQ~, except for CKM elements in 
the former which are replaced by their complex conjugates in the latter. Thus, N 
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= Ml2- St&l is pure imaginary. If, in particular, arg N = -7d2, then, from Eq. 

(5.301, 

a.rgF=tan =(43.46&0.08)” . (5.32) 

In the absence of direct CP violation, this angle (or, for arg N = +x/2, this angle 
plus x1 is the predicted phase of r+- and of TOO. Comparing Eq. (5.32) with Eqs. 
(5.26) and (5.271, we see that the agreement is superb. We note that in obtaining 
arg r, we used Eqs. (5.8) for the eigenvalues of M These equations assume the CPT 
constraint Ml1 = M&J f X Thus, the agreement between the phase we calculated 
for r and the measured phases of T + and ii& is a test of CPT invariance, 

AU confirmed CP-violating effects observed to date can be explained in 
terms of indirect CP violation alone. For example, as we have already remarked, 
the measured magnitudes of r\ +- and rO,, are compatible with equality, as required 
when there is no direct CP violation. (We shall return to this point.) In addition, 
the measured value of the charge asymmetry 6, Eq. (2.131, is compatible with the 
hypothesis that this asymmetry arises purely from indirect CP violation. This 
hypothesis is expected to be a very good one, since, as illustrated in Fig. 8, in the 
SM there is only one diagram for the decay KL + ?r!+v, and, similarly, only one 
for KL + K+H. The violation of CP arises from phase factors, and these phase 
factors never produce physical effects unless there is an interference between 
amplitudes proportional to them. When a decay involves only one diagram, hence 
only one amplitude, there can be no interference. Therefore, the decay amplitude 
cannot violate CP. That is, there can be no “direct” CP violation. 

d a 
(a) (b) 

Figure 8. (a) The sole SM diagram for KL + ~tk’tv. (b) The sole SM diagram for KL -+ 

x+PV. Note that KL + lrk’+v proceeds only through the Ko(5d) component of the KL, 

while KL + z+l!-t; proceeds only through the z(.s$ component. 

To see that the value of 6 is compatible with the absence of direct CP viola- 
tion, we note from Eqs. (5.9) and (5.13) that 
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IKL) = (l+ E)]K”)-(l-%I~) . (5.33) 

keiling (see Fig. 8) that KL + r?+v and KL + x+kV occur only through the Ko 
nd 2 components of the KL, respectively, we have 

(&+v(TtKL) = (I+ E)(JT~~vITIKO) (5.34) 

:nd 

(x+!--VITIKL) = (l- E)(x+!q]T)s) . (5.35) 

If there is no direct CP violation, then (x-4+v I T I K”) and (x+H I T Ii?), being 
decay amplitudes for CP-mirror-image processes, have equal magnitude. Then 

(Yj = rw, i x-e+V)-r(KL + Ir+!-Tq 
(0 + " 

(5.36) 

where we have used the fact that I F I 2 (( 1. Now, absent direct CP violation, I z I = 
IT+] =2.28xlO+Th us, if direct CP violation is also absent from 6, then, fi-om 
Eq. (5.36), 6 cannot exceed 2 (2.28 x 10-S) = 4.56 x 103. The measured value of 6 
quoted in Eq. (2.13) satisfies this constraint easily. 

While there is as yet no firm evidence for direct CP violation, a great effort 
has been made to find such evidence by showing experimentally that in K + xx, 
TW # r+-, in violation of Eq. (5.28). However, so far, this challenging effort has 
been inconclusive. The reported experimental results are 

(23 f 6.5) x lo4 NA31 Experiment 27 

(7.4 f 5.2 f 2.9) x lOA E731 Experiment 28 . 
(5.37) 

(In the second of these results, the first error is statistical and the second system- 
atic.) Plainly, more needs to be done to clarify the situation. More sensitive exper- 
iments which wiU try to establish that ii&, + r+ are planned for both Fermilab and 
CERN. In addition, at the coming cp factory DAONE, an effort w-ill be made to es- 
tablish the e&tence of direct CP violation by following the ingenious suggestion29 
to study the decay chain 



cp+K + K . (5.38) 

To see that the probabihty of this chain depends on whether there is direct CP vio- 
lation, consider the special case where the two kaons decay simultaneously in the 
cp rest frame. Since the cp has S = 1, the primary decay cp + KK leaves the kaons in 
a p wave. As a result, these two kaons cannot decay simultaneously to the same 
final state.30 F or, if they did, then just after their decay, we would have two identi- 
caI spinless bosonic systems (one from each of the kaons) in an overall p wave, in 
violation of the rule that one cannot have two identical bosons in an antisymmet- 
ric state. Thus, if at some time t one of the kaons decays to x+r, then at this time, 
the other kaon must be that linear combination of Ko and 2 which cannot decay 
to x+r. Now, in the absence of direct CP violation, we have (xx 1 T 1 Kz) = 0. Then 
the linear combination of Ko and ? which cannot decay to x+x- is simply K2. 
However, (in the absence of direct CP violation) K2 cannot decay to ~0x0 either. 
Thus, when there is no direct CP violation, the two kaon decays in the decay 
sequence (5.38) cannot occur simultaneously. 

Of course, the experiment to study the decay chain (5.38) wilI not restrict 
itself to events in which the two kaons decay simultaneously. However, by consid- 
ering this special case, we have seen that the experiment will be sensitive to 
whether direct CP violation is present or not. 

If, as the SM states, CP violation is due to complex phases in the CKM ma- 
trix, then direct CP violation is indeed expected to occur, both in K and B decays, 
apart from exceptions such as KL + +@‘Y’. In particular, barring an accident, 
in K + xx the direct CP violation (xx 1 T 1 K2) # 0 does indeed occur. Then r+ z Too, 
or equivalently, the parameter “%e k’k)” of Eq. (5.37) is nonvanishing. However, 
calculating the precise SM prediction for Se (elk) is very challenging. From exist- 

ing calculations, one predicts only that31 

-2 x l@ < !Re W/s) c 13 x lo4 . (5.39) 

Nevertheless, for %e C&‘/E) to vanish, or to be much smaller than 10-4, seems un- 
likely. Thus, it is very interesting to search, with a sensitivity at the level of lti, for 
a nonvanishing value of this directly-CP-violating quantity. Establishing a nonvan- 
ishing value at this level would not only serve as a test, at least qualitative, of the 
SM picture of CP violation, but would also discriminate against the models which 
ascribe CP violation to a so-called “superweak interaction”32 lying beyond the SM. 
In general, superweak models of CP violation predict that %e (&I/E) << 104. 32333 



.4. The Rare Decay KL + x%5 

Measurement of the branching ratio for the so far unobserved rare decay 
1~ -+ x%ij would provide a clean test of the SM of CP violation, complementing the 
?sts to come from B decays. 

The system x%G can be in either a CP = +l or a CP = -1 state. However, 
.eglecting neutrino mass, when this system is produced by SM interactions in KL 
.ecay, it will be in a pure CP = +l state. But in the absence of CP violation, CP(KL) 
= -1. Thus, the decay KL + @W violates CP. 

To see why the SM interactions yield a purely CP-even final state in KL + 
:%V, we note that the CP of the final state is given by 

CP(xovV) = CP(x0) CP(W (-1)L , (5.40) 

vhere CP(v3) is the CP of the vv pair, and L is the orbital angular momentum of 
&he xo relative to tbis pair in the KL rest frame. Since the KL is spinless, L = J(W), 

where J(vij) is the total angular momentum of the pair. Now, when neutrino 
mass is neglected, a neutrino produced by SM interactions will be left-handed, 
and an antineutrino right-handed. Thus, in the effective Hamiltonian %ff for KL 
+ xw, in the rest frame of the vJ pair, the only operator which can create this 
pair is VL~VL, where VL is the left-handed projection of the neutrino field. (Other 
operators bilinear in the neutrino field would create a neutrino pair with the 
wrong helicities. For example, the scalar operator vv would create a v and B of 
like, ratherthan opposite, helicity.) Now, the vv pair created by the action of VL~VL 

on the vacuum will have CP(vv) = +I, since PL~VL is even under CP. In addition, 
this pair will have J(W) = 1, since BL~VL is a spatial three-vector operator. Thus, 
since CP(7cO) = -1, Eq. (5.40) yields CP(x%W = +l. 

In the SM, KL + x% comes from the dia 
is=-= 

in Fig. 9, plus the related 
diagrams in which the decay goes through the rather than the Ko, component 
of the KL. Notice that all the diagrams in Fig. 9 z&e proportional to V&Vtd. Thus, 
their ? analogues, in which every quark has been replaced by its antiquark, are 
proportional to VbV&. Now, from Eqs. (5.9), (5.10), and (5.1), 

IKL) = &1E(o)-&I~) . (5.41) 

At the quark level, the ? + Ko mixing amplitude !%f12 arises from diagrams such 
as, for example,the one in Fig. 10, proportional to (vcsV&)2. Suppose this diagram 



kk d 
7s 

d 
\/ 

d 

Figure 9. The SM diagrams for KL + I&? through the Kc(W) component of the KL. 

> KO 

Figure 10. A diagram for ? + @ mixing. 

dominates Sf12, so that its CP-conjugate, proportional to (V* V d>2, dominates 
3621. Then, from Eq. (5.411, the diagrams of Fig. 9, and their K analogues, we “9 

have for the KL + ti amplitude 

(d'd'-dK~) = VcsVCbVt*SVtd - %&dVtsVt*d . (5.42) 

That is, 

(hi T 1 KL) = 3m(vcs~&vt*,V~d) 3 J . (5.43) 
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“ram Fig. 7, it is easy to see that the phase-convention-independent quantity J is 
ust twice the area of the ds unitarity triangle. What is less obvious is that all six 
mitarity triangles have the same area, so that J, which is known as the Jarlskog 
nvariant, is twice the area of any of them. 34 Since the unitarity triangles can 

lave nonzero area only if the CKM matrix contains CP-violating complex phase 
‘actors, J is a convention-free measure of CP violation in the CKM matrix. 

In addition to the mixing diagram of Fig. 10, one expects significant contri- 
~utions from other processes where the quark (antiquark) line involves an inter- 
nediate u tu). 35 These contributions to Ml2 are proportional to (v,Vfd>2, rather 
ban (V,SV&)2, and their counterparts in M21 are proportional to (V&VUd>2. 
Sowever, in view of the relative sizes of the terms in the ds unitarity constraint of 
Xqs. (4.36), this constraint implies that, apart from a minus sign, V,V& has the 
ame phase as V,,V& to within a few milliradians. As a result, even when the u- 
quark contributions to Ml2 and 3121 are included, the CP-violating phase probed by 
KL + x%j is still that of V,,V&V&Vd, and we still have (x% 1 T 1 KL) 0~ J. 

The decay KL + x% is not only CP violating, but is strongly dominated by 
direct CP violation. 36 One way to see this is to estimate r&,,v. To this end, we note 
that once the heavy W and Z boson degrees of freedom in the diagrams of Fig. 9 
are integrated out, the effective Hamiltonian Y-&a for KL + x(% is given by1 

2& = GV&Vd (z ya d) (FL p VL) + h.c. . (5.44) 

Here, G is a constant which is fairly well determined once the mass of the top 
quark is given. For K& + xovV, the appropriate effective Hamiltonian represents 
both the diagrams of Fig. 9 (with KL + KS) and similar diagrams with treplaced 
by c, and so is more complicated than the A& of Eq. (5.44). However, we will get 
;he right order of magnitude for the & -+ ROVV amplitude if we neglect the charm 
contribution, and take Y-&E to be given by Eq. (5.44) for both KL + x@vv and KS + 
h.37 Then from the definition (5.14) for i@, Eq. (5.41) for 1 KL) and its analogue 
for 1 KS), and Eq. (5.44) for Y&g, we have for r&F the estimate 

iT 
7r”vv - 

[~7;;v;,vtd(~“!~u,diKO) -dGvtsv;d( ~“l&@)]( v$wLlo) (5 45) 
. . I, + 1, II 

Now, as we have already noted, the CKhI phase of 4 Ml2 is that Of VcSV&. Thus, 
we may write 

M 12 = r12LVch , (5.46) 
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where ru has no CKhI phase. Similarly, we may write 

Ihi1 = rZl%&d > 

where r21 has no CKM phase. Let us now go to a phase convention in which V is 
real when CP is conserved. In such a convention, we must have 

r12( 7P(Bu,ap) = ‘21( nO~kYp) ’ (5.48) 

since Txovv must vanish when CP is conserved. Hence, from Eq. (5.45), in our 
chosen convention, when CP is not conserved, we must have 

(5.49) 

Since both sides of this relation are phase-convention independent, this estimate 
holds in any convention. 

Combined with our knowledge of the CKM matrix,38 the relation (5.49) 
yields the estimate 0.1 5 1 rXov3 I,< 1. Even though this estimate was obtained 
neglecting the charm-exchange contribution to KS + flvv, we may safely con- 
clude that r$,,v is much larger than the corresponding K + xx parameters r+- 
and Too, both of which are -2x10-3. However, from Eq. (5.28) we know that when 
direct CP violation is absent, the parameters rf for different CP-even final states 
are all equal. Thus, we conclude that if the SM description of K -+ n%ij is correct, 
direct CP violation is present in neutral K decays. 

From Eqs. (5.14) and (5.111, we have 

fT&v = 
AZ+ & 

Al+ & ’ 
(5.50) 

where A2 is the CP-viola-w decay amplitude (x%P 1 T 1%~ ), and Al is the CP- 
conserving one (ROW I T I Kl). As we have seen, I ZI G I r+- I = 2x103, but I r~v I 
is much larger than this. Thus, from Eq. (5.501, I A2 I >> I ZA 1 I . That is, in 
(x%~ 1 T 1 KL), which from Eq. (5.11) is proportional to A2 + al, the directly CP 
violating term A2 obminates over the indirectly CP violating one al.39 

To calculate IYKL + K%v), one must evahate the matrix element 
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(+v+%&Q’) = GVt*,Vtd(~(~y,dIKo)(~/~~yavLIo) (5.51) 

the effective Hamdtonian of Eq. (5.44), and the simply-related matrix element 
%V 1 %&I 3). In Eq. (5.51), the leptonic matrix element is, of course, trivial, and 
ie hadromc matrix element (no I Z ya d I Ko) is related by isospin4o to (no I S Ya 
i K+), a matrix element which has been measured by determining the rate for K+ 
+ xoe+v. For fixed input parameters (the top quark mass, for example), the theo- 
&al uncertainty in BR(KL + K%P) is only +1.4%.31 Thus, measurement of this 
.-anching ratio could yield a rather accurate value of the Jarlskog invariant J- 
lformation about the CKM matrix which must be consistent with that from other 
mrces. 

To be sure, the measurement would not be easy. Given our present knowl- 
Ige of the relevant CKM elements, BR(KL + x%6) = (l-5)x10-ll in the SM. 
fbsening such a rare decay will be a challenge. Adding to the challenge will be 
he fact that BR(KL + x0x0) / BR(KL + H%) - 108, so that one must take steps to 
nsure that any decay identified as KL + x%V is not really the much more likely 
in + x%0, with one of the pions having escaped detection. Nevertheless, it is to be 
loped that BR(KL + K%W) will indeed be measured. 

j. Do Electric Dlnole Moments VIolate CP? 

Outside of the neutral meson systems, CP violation has been sought by 
rying to show that a spin one-half fermion, such as the neutron or electron, has 
m electric dipole moment (EDM). It is trivial to prove, as we shall shortly, that 
such an EDM would violate invariance under time reversal T. If one then 
assumes that the world is invariant under CPT, it follows that an EDM would 
violate CP. We would like to close the present article by asking whether one can 
prove directly that an EDM violates CP without invoking CFT invariance. 

Let us first prove that if a quantum system with deftite angular momen- 
tum 2 has an EDM, then T invariance is violated. By the rotational properties of 
the system, the EDM, &I, must point along the vector 2. That is, 

SE1 = gE12, (6.1) 

where gE1 is a constant. Imagine, now, that the system is in a static external 
electric field 2. The interaction energy 2: due to the EDM is then 

E= -&ld = -gEl ?d . (6.2) 



Now, it is obvious that under time reversal, Z + 3, and 2 + -2. Thus, ZZ + - E:. 
That is, if the interaction energy of the world includes a term ste mming from an 

EDM, then this energy is not invariant under T. 

If nature is described by a local, relativistically-invariant quantum field 
theory (such as the SM and its extensions), then it is invariant under CPT.41 
Thus, it is relatively safe to assume that CPT invariance does hold, so that an 
EDM violates not only T but also CP. 

But what if CPI’ does not hold? Can we prove that an EDM still violates CP? 
To try to do so, we recall that, apart from a constant, the EDM of a spin one-half 
fermion f, &f), is just the q2 = 0 value of the form factor E(q2) in the “electric 
dipole term” 

i E(q2) T\F fi2 opv qv “/5 UI (6.3) 

in the general decomposition of the amplitude for y + f + f, the absorption of a pho- 
ton by f. Here, q is the momentum carried by the photon, @ is the photon polariza- 
tion, and ul and u2 are, respectively, the initial and final Dirac spinors for f. To 
explore the CP properties of the electric dipole coupling, (6.3), let us go to the cross 
channel, where we have the process y + T+ f. In this channel, the amplitude (6.3) 
becomes 

(6.4) 

where v is the Dirac spinor for an antifermion. We are now in a region where q2 2 
(2m#, where mf is the mass of f, while in considering y + f + f we were in a re- 
gion where q 2 <_ 0. Now, one can show that if y + T+ f proceeds through the cou- 
pling (6.4), then the Ff pair will be produced in a state which in the nonrelativistic 
limit is 1P1. Furthermore, the CP of an Tf pair in a state with orbital angular 
momentum L and total spin S is just (-1) s+l. Thus, the electric dipole coupling 
(6.4) leaves the Ff pair in a state with CP = -1. But a photon has CP = +l. Thus, 
when y + T + f proceeds through the electric dipole coupling (6.4), CP is not 
conserved. 

We have obtained this result for y + T+ f without invoking CPT. Have we 
thereby proved that an EDM violates CP even when CPT does not hold? Actually, 
we have not! Recall that the EDM off is proportional to the value of E(q2) at q2 = 0. 
To relate E(q2=0) to E(q2) in the positive q2 region which corresponds to y + T+ f, 
we must invoke “crossing”. Crossing tells us that the analyticity properties of E(q2) 
are such that if this form factor is nonzero in the region q2 5 0, which corresponds 
to y + f + f, then it is also nonzero in the region q2 2(2mf)2, which corresponds to y 
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+ T+ f. Thus, f?om our previous argument, if &f) # 0, then y + r+ f violates CP. 
However, this author does not know of any way to prove that crossing holds with- 
out assuming that nature is described by a local, relativistically-invatiant quan- 
tum field theory. And, if we assume that nature is described by such a theory, 
then CPT invariance holds! Thus, we have not succeeded in proving that an EDM 
violates CP even when CPT does not hold. Indeed, we still do not know whether an 
EDM necessarily violates CP under such circumstances. 

. 7. Conclusloa 

It is particularly natural to hypothesize that CP violation is an effect of the 
SM weak interaction, which means that it comes from phases in the quark mix- 
ing matrix. During the next two decades, this hypothesis will be cleanly tested 
through elegant experiments on B and K decays. Regardless of whether these 
experiments confirm or disprove the hypothesis, their results will be exciting 

news. 
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